

Installation guide

Installation of concrete pipes and manholes

Adapted to the specification given in NS 3420-U: 2008 and "Statens Vegvesen" Handbook 018: 2011

Generally

Basal companies are leading in Norway in the development and production of concrete, water and wastewater, products. Basal consist of producers spread all over Norway.

Basal main products:

- Basal "FALS-pipe"
 - ig "FALS-pipe" (pipes with integrated seal)
 - "FALS-pipe" (pipes with loose seal)
- Basal "MUFFE-pipe"
 - ig "MUFFE-pipe" (pipes with integrated seal)
- Basal manholes
 - ig manholes (manholes with integrated seal)
 - manholes (manholes with loose seal)

Dimensioning of pipes

The basis for dimensioning is in the internal report no.1521 and 1554 from the Public Roads Administration.

Excavation trench safety

Safety in trenches is specified in the regulation "Excavation and fortification of trenches" by the Directorate for the Norwegian Labour Inspectorate.

Receipt of product – Storage	4
Labelling of pipes and manholes	5
Lifting and assembly equipment	6
Trench excavation – pipes	7
Geotextile – Trench bedding – Frost protection	8
Rock trench – Bedding variation – Bedding	9
Preparation before installing pipes and manholes	10
Installation of pipes	11
Basal Pipelifter	
Pipes laid in curves	
Sidefill, protective layer and backfill	
Watertightness by air testing - pipes	
Control of gap size in installed pipes	17
Trenching manholes	
Installation of manhole and seal	19
Watertightness - manholes	20
Tables - "MUFFE-pipes"	21
Tables - "FALS-pipes"	
Tables – chamber units	23
Tables – base units	
Tables - cones	
Tables - adjustment units	

Table of contents

Receipt of concrete products

On receipt of concrete products, the recipient will visually check that the pipes and manholes with accessories are in accordance with the order and free of damage. Receipts will be issued for goods received. Unapproved goods are marked and returned to the supplier.

Note that when items are signed for, without comments, the products have been accepted.

Storage

The surface must be level and stable and be sufficiently capable of carrying the load.

Manholes must be stored standing up, to a maximum of 3 in height. Pipes who are delivered on pallets from the factory are stored with a maximum of 2 pallets in height. If stacking pipes the lowest layer is laid on a bedding so that the pipes do not get frozen to the ground during winter time (eg. 2"x4" wooden boards). The stack must be secured properly to prevent it from collapsing.

"MUFFE-pipe": must be stacked and supported under the barrel so the socket is free of load. Every other layer is turned so that the bells protrude the opposite direction.

"FALS-pipe": Every other layer is turned in opposite direction.

Pipes

- ig-pipe is labelled: BASAL ig
- · Pipe with loose seal is labelled: BASAL

NOTE! Pipes with asymmetrical reinforcement:

Concrete pipes with reinforcement that are not symmetrical are marked **"OPP" (UP) + a blue stripe** on the inside and outside of the socket. This marking must be oriented properly (up) when laying. If the pipes are laid incorrectly, the effect of the reinforcement will be reduced and strain damage can occur.

ONN K BASAL ig T BT 43-09 1200 4m 3.2 t

Manholes

- ig-manhole is labelled: BASAL ig
- Manhole with loose seal is labelled: BASAL

Example of labelling of Manhole

Labelling of pipes and manholes

Lifting and assembly equipment

Basal installation guide 2014	6
-------------------------------	---

"FALS-pipe"						
DN	Length mm	Universal- anchorhead	Lifting and assembly equipment			
300	1000 2000 2250	1	Congrip nr. 1 Congrip nr. 1 Congrip nr. 1C			
400	1000 2000 2250	1	Congrip nr. 1 Congrip nr. 1 Congrip nr. 1C			
500	1000 2000 2250	1	Congrip nr. 1 Congrip nr. 1 Congrip nr. 1C			
600	1000 2000 2250	1	Congrip nr. 1 Congrip nr. 1 Congrip nr. 1C			
800	1000 2000 2250	3 - 4	Congrip nr. 3 Congrip nr. 4 Congrip nr. 4C			
1000	1000 2000 2250	3 - 4	Congrip nr. 3 Congrip nr. 4 Congrip nr. 4C			
1200	1000 2000 2250	3 - 4	Congrip nr. 3 Congrip nr. 4 Congrip nr. 4C			
1400	1000 2000 2250	3 - 4	Congrip nr. 3 Congrip nr. 4 Congrip nr. 4C			
1600	1500 1750 2250	3 - 4	Congrip nr. 3 Congrip nr. 4 Congrip nr. 4C			
1800	2000	3 - 4	Congrip nr. 4			
2000	1500	3 - 4	Congrip nr. 3			

Lifting equipment must be approved by the Norwegian Labour Inspection Authority. Equipment may be borrowed, hired or bought from Basal companies, see page 28.

See page 12 for information about Basal Pipelifter.

Manhole						
DN Anchour type		Anchour Universal- type anchor head				
1000	1	1	2-part nr. 1			
1200	1	1	2-part nr. 1			
1400	1	1	2-part nr. 1			
1600	1	1	2-part nr. 1			
2000	3	3	3-part nr. 3/4*			
2400	4	4	3-part nr. 3/4*			
2500	3	3	3-part nr. 3/4*			
3000	4	4	3-part nr. 3/4*			

* Each "leg" in the lifting chain MUST, at least have the same length as the manhole's diameter plus the distance from the top manhole to the lifting anchor.

Trench excavation

Trench width

When compaction is necessary the trench must be dug wide enough to allow compaction equipment on both sides of the pipe.

Width of trench and minimum distances between pipelines are stated in NS-EN 1610, item 6.2.2.

Trench excavation – pipes

Geotextile – Trench bedding – Frost protection

Geotextile

Trench bedding

If the bottom of the trench consists of bad ground such as turf, humic material, soft clay or silt, a separation layer or geotextile must be used to avoid mixing of materials in the pipezone. The bedding must be on ground that is as undisturbed as possible. If the bottom of the trench consists of gravel or undisturbed silt or clay this is usually not a problem. Stones or other hard objects must be dug out and be replaced with gravel (crushed).

Frost protection:

In the winter trenches wich are exposed to frost are at risk of freezing. When the soil thaws the material becomes soft and loses its carrying capacity. Therefore the bottom of the trench and the sides have to be covered with insulating mats if the ground will be left open over night. If frost has occurred in the ground material, the frozen mass must be removed before further work is done. Snow and ice must be removed from the trench. Frost susceptible material must not be used in the area around pipes or manholes if they are exposed to freezing temperatures.

Rock trench

The bottom of the trench must be levelled with the same material as in the bedding. When there is a risk for material to washout, geotextile must be used under the bedding to prevent loose material from disappearing.

Bedding

The bedding is the most important part of the trench cross section. The bedding must distribute the support under the pipe and ensure that large rocks, etc. are not pressing against the pipe. The bedding must consist of gravel (crushed).

The thickness after compaction must be at least as listed in table (I), see below. The maximum allowed grain size in the bedding materials depends in the diameter of the pipe and is listed in table (II).

Bedding variation

Where the bottom of the trench changes from rock to soil, or from very hard soil material to less compact material, the difference in material density is compensated by increasing the thickness of the bedding in the transition between rock and soil. This will prevent setting of the trench bottom.

Bedding material must be free of frost and ice, and compacted to 95 % Standard Proctor. Usually 1 pass with a vibroplate or vibrostamper provides optimal compaction of the bedding of uniform sized aggregate. After compaction, 1/3 of the bedding thickness must be loosened by raking to a width of at least half the pipe diameter. Loosely distributed uniform sized aggregate gives the same effect as the raking procedure.

	Minimum bedding thickness (I)						
	DN	Normal ground conditions	Hard ground conditions*				
	DN < 400	150	150				
	$400 \le DN \le 1200$	200	300				
	1200 < DN ≤ 2000	250	400				
	Maximum nominal grain size for bedding material (II)						
	DN	Well sorted material	Uniform sized material				
	DN < 400	32	22				
)	DN ≥ 400	53	32				

Rock trench – Bedding variation – Bedding

Preparation before installing pipes and manholes with integrated seals:

- 1. Clean the spigot and socket
- 2. Check that the pipes/manholes are not damaged.
- 3. Check the product quality and laying depth
- 4. Remove any styrofoam remaining on the ig-seal
- 5. Lubricate the spigot with Forsheda lubricant

Fitting of seals on pipes and manholes with loose seals:

See page 19, Installation of manholes and manhole seals.

Installation of "MUFFE-pipe"

Dig a space for the socket so that the pipe barrel and the socket have even contact with the bedding. The spigot is centred in the socket before pulling them together, and they are joined with a

special installation tool. Check that the pipes are properly installed.

The supplier of pipes and manholes also provides lifting and installation equipment.

Laying usually begins from the downstream end of the trench and the socket will point upstream. Any change of angle in the joint is made after the pipes are assembled.

Correct use of lifting equipment

"FALS-pipe" and manholes have lifting anchors. The lifting link is attached to the lifting anchor as shown in figure. Ensure that the lifting link is locked before lifting.

Any ice or concrete remainings around the lifting anchor must

BASA

be removed before installation of lifting equipment.

The chain sling top angle must not exceed 60°. This is achieved when the length of the chain sling (*l*) is longer then the distance between the lifting anchors (a). Giving l > a.

Installation of "FALS-pipe"

Three part lifting and installation tools have two equally long chains that are used for lifting and transport. The third and longest chain is used to pull the

pipes together. The pipe is lowered down and is laid next to the previously installed pipe. The chain nearest the socket is disconnected and hung onto the lifting hook. The installation chain is connected to the lifting anchor at the opposite end of the already installed pipe. When applying an upwards force the new pipe is pulled into place without pushing the previous pipe out of place.

Installation of pipes

Basal Pipelifter Lifting, tilting and handling in one operation

- Basal Pipelifter type 1: DN 200 DN 400 Basal ig-pipe
- Basal Pipelifter type 2: DN 300 DN 1200 Basal ig-pipe
- Basal Pipelifter type 3: DN 1400 DN 2000 Basal ig-pipe
- May be equipped with all known types of guick hitch attachments.
- May be combined with rotary tilt and machine-fitted GPS
- May be tilted to a 25° angle
- Pipe up to 6 tons

Basal Pipelifter provides optimal and flexible pipe positioning, both in terms of direction and angle. The work goes faster at the same time as important HSE considerations are taken care of All installation and fitting may be carried out from the cabin of the digger.

See page 5 for information about orientation of pipes when using the Pipelifter.

Basal Pipelifter type 3: DN 1400 - DN 2000

			Angular deflection are to be carried out after the pipes are installed				
			Max angular deflection in joint	Pipe length in metres	DN		
			2,9 °	1,0	100		
			2,9 °	1,0	125		
			2,9 °	1,25	150		
angbend ."	AL ig-l	BAS	2,9 °	1,5	200		
<u> </u>	.s-pipe:	FAL	2,9 °	1,5	250		
m)	Mål (m		2,9 °	2,0	250		
Ra			1,7 °	2,0	300		
/ (n	DN	α	1,7 °	2,25	400		
900	500	5°	1,7 °	2,25	500		
900	600	5°	1,7 °	2,25	600		
900	800	5°	1,2 °	2,25	800		
900	1000	5°	1,2 °	2,25	1000		
900	1200	5°	1 °	2,25	1200		
1850	1400	5°	0,9 °	2,25	1400		
1850	1600	5°	0,7 °	2,0	1600		
1850	1800	5°	0,6 °	1,75	1800		
1350	2000	5°	0,6 °	1,5	2000		

	Mål (mm)				Additional	
	α	DN	Ι	Radius (m)	angular deflection in joint (°)	
	5°	500	900	10,1	1,7	
	5°	600	900	10,1	1,7	
	5°	800	900	10,0	1,2	
	5°	1000	900	9,9	1,2	
	5°	1200	900	9,8	1	
	5°	1400	1850	20,6	0,9	
	5°	1600	1850	20,5	0,7	
	5°	1800	1850	20,4	0,6	
	5°	2000	1350	24,6	0,6	

Max allowed angle change in mm/m is given in the tables for pipes pages 21 and 22.

Pipes laid in curves

Sidefill, protective layer

Sidefill must be placed in layers on each side of the pipe before compressing.

DN	DN < 400	DN ≥ 400	
Largest nominal	64 mm	120 mm	
grain size			

Areas that require an even ground level (roads and squares) the sidefill and protective layer are usually compacted to 95% Standard Proctor.

1-2 passes of vibration stamper

(maximum 300 mm thickness per layer) normally provide adequate compaction when aggregate or gravel are used.

If vibrator plate is used: 2-4 passes per layer is necessary (maximum 200 mm thickness per layer)

When pipelines are laid on several levels, fill up the entire width of the trench layer by layer, to the underside of the next pipe. Compaction is carried out in layers, but the zone right over the pipe must not be compacted. Permitted weight of compaction equipment in sidefill and protective layer:

$$\label{eq:DN} \begin{split} & \text{DN} \leq 1000\text{: Up to } 100 \text{ kg} \\ & \text{DN} > 1000\text{: Up to } 200 \text{ kg} \end{split}$$

Protective layer (300 mm) directly over the pipeline will normally be laid out loosely.

In areas where there is no requirement of an even ground level (for example outside of roads and squares) compressing is normally not necessary as long as the pipeline is not laid down with thicker top cover than 2/3 of the indicated top cover on the pipe.

Backfill

The backfill material must not contain stones with a larger diameter than 0.5 m. If the fill material is to be compacted, the largest diameter for stones must not exceed 2/3 of layer thickness.

Compaction with heavy equipment right over the pipe must not be carried out before the thickness of the layer is:

Min. thickness over top of pipe before compaction with heavy equipment (m)	Compaction equipment
0,20	Vibrating plate 50-200 kg
0,30	Machine stamper < 70 kg Vibrating plate 201-500 kg
0,40 1)	Vibrating roller 10-15 kN/m
0,60 1)	Vibrating roller 16-25 kN/m
1,20 1)	Vibrating roller 26-40 kN/m
1,80 1)	Vibrating roller 41-55 kN/m
2,40 1)	Vibrating roller > 55 kN/m

¹⁾For concrete pipes marked with a top cover of minimum 4 metres the thickness of the layer before compaction with heavy equipment must be as given in the table. For pipes marked with a top cover less than 4 metres, the layer thickness must be increased by one level in the table.

Requirement for top cover before compaction also applies to a distance L from the centre of the pipe, where L= thickness above the top of the pipe (H) plus half the pipe diameter.

Sidefill, protective layer and backfill

Watertightness by air testing - pipes

Generally

Before testing, the plugs and connections on the equipment must be checked for any leaks. When testing pipes between manholes, plugs are to be fitted inside the pipe.

Air is supplied so that the pressure becomes 10 % higher than the testing pressure. The air supply is then closed. After 5 minutes, the pressure must be reduced to the indicated test pressure (P0).

If the pressure drop after the test period is less than given in table (Δ p), the pipeline is approved.

Test	Pressure mVS / Bar		Test time with air (minutes)				Test time wit			
method	P0	Δр	DN200	DN300	DN400	DN600	DN800	DN1000		
LC	1/0,1	0,15 / 0,015	3	4	5	8	11	14		
LD	2/0,2	0,15 / 0,015	1,5	2	2,5	4	5	7		

The difference in test method LC and LD are test pressure and test time.

Pipes with integrated seals

If the exterior gap dimension (a) measured in mm is outside the values given in the table, the interior gap dimension (b) should be checked.

Clarification directly with the supplier is recommended if there is uncertainty about the installation and the control of the gap size.

DN	Min a	Max a	Min b	Max b
150			2	13
200			2	14
250			2	19
300	(16)	(33)	2	19
400	18	36	2	20
500	14	32	2	20
600	15	33	2	20
800	18	43	2	27
1000	18	43	2	27
1200	22	48	2	28
1400	24	50	2	28
1600	28	57	2	31
1800	28	61	2	35
2000	30	63	2	35

Pipes with loose seal

DN	Max b
1200 - 2000	20

Control of gap size in installed pipes

Trenching manholes

Bedding

Bedding is levelled to the correct height. Support bars or concrete foundation should normally not be used.

Use gravel (crushed) d_{max} = 53 mm, compacted to 95 % Standard Proctor, similar to pipes.

It should not be used frost susceptible soil for bedding or backfill around manholes.

- 1. Bedding. Same material, types and grain size, as for pipes.
- 2. Backfill. Same material, types and grain size, as for sidefill of pipes.
- 3. Native material
- 4. Use Geotextile where the native material is clay, silt or similar.

Place the seal on the spigot in to the recess. Stretch out the seal by pulling it out at some points. Centre the manhole and assemble. The seal's glued joint will slip the first time when assembled (applies only to certain seals). If refitting is necessary, place the skin as shown.

When using Basal ig-manhole (manhole with integrated seal) the manhole spigots are lubricated, see page 10.

The surface is compacted and levelled. Installation of manholes is normally assisted by the manhole own weight. Manholes with a low height may require an extra load when assembling.

Basal manhole system is handled using a chain sling.

A "spissvender" is installed in the last pipe's bell, and the base section is centred on this. The base section is hoisted free from the surface and installed at the spigot with the use of an iron bar. For larger pipe dimensions the base section is jacked on to the spigot using a special installation tool.

Installation of manhole and seal

Watertightness - manholes

Testing with air

For manholes DN \leq 1000 the specifications in NS-EN 1610, point 13.2 apply. These are the same requirements as for pipes, but half the testing time stated for pipes will be used. See page 16, Watertightness by air testing - pipes

For manholes DN > 1000 it is recommended to use simplified testing with water. For testing with air DN >1000 the test specification is described in NS 3420.

Simplified test with water

- 1. The manhole is filled with water to the top cone or cover slab
- 2. Conditioning
- 3. Refill to the top cone or cover slab
- 4. After 30 minutes new amounts of water are fed to the top cone or cover slab
- 5. The new amounts of water must be $<0.2\ l/m^2$ interior wetted manhole surface.
- NOTE: When choosing another method for testing of the manholes apart from simplified testing with water, it is necessary to check that the cover slab and cones will withstand the forces that will arise during leak testing.

Basal "MUFFE-pipes" ig (pipes with integrated seal)							
	Measurem	nent (mm)	Top cover	Max	Weight	
DN	1	t	Dm	min/max (m)	(mm/m)	approx. (kg)	
150	500 1000	33 33	284	0,5-10,0	50	35 55	
200	500 1000 1500	37 37 41	353	0,5-8,0	50	50 90 140	
250	500 1000 1500 2000	42 42 45 48	425	0,5-7,0	50	70 130 190 250	
300	500 2000	45 53	481	0,5-6,0	30	80 340	
400	1000 2000	50 63	590	0,5-5,0	30	240 500	

Tables - "MUFFE-pipes"

Tables - "FALS-pipes"

Basal "FALS-pipes" (loose seal)								
Me	easurem	ent (m	m)	Top cover	Seal F140	Max.	Weiaht	
DN	I	t	OD	min./ max (m)	(or F146) (mm)	angular deflection (mm/m)	approx. (kg)	
1200	2000	136	1472	0,5-3,0 **	20,0	17	2880	
1400	2000	156	1712	0,5-3,0 **	24,5	15	3980	
1600	2000 2250	176	1952	0,5-3,0 **	24,5	13	5000 5640	
2000	1500	215	2430	0,5-3,0 **	24,5	10	5700	
2400	1000 1500	180	2760	0,5-3,0	27,0	-	3700 5550	

* Unreinforced. Pipe with large top cover must be ordered specially.

** Pipes are reinforced. Maximum desired top cover must be stated when ordering. Pipe with top cover as given in the table are normal stocked goods.

¹⁾ At road exits the minimum top cover can be reduced to 0.2 m. Backfill must be done with aggregate 8-12, then compacted.

Basal "FALS-pipes" ig (integrated seal)						
Di	mensio	ns (m	m)	Top cover	Max. angular	Weight
DN	Ι	t	OD	min/max (m)	deflection (mm/m)	approx. (kg)
300	1000 2000	90	480	0,5-12 * 1)	30	275 550
400	1000 2000	85	570	0,5-7,0 * 1)	30	330 650
500	1000 2000	90	680	0,5-6,0 *	30	420 840
600	1000 2000	94	788	0,5-4,0 */**	30	520 1030
800	1000 2000	110	1020	0,5-4,0 **	20	790 1580
1000	1000 2000	125	1250	0,5-4,0 **	20	1110 2210
1200	1000 2000	136	1472	0,5-3,0 **	17	1430 2860
1400	1000 2000	156	1712	0,5-4,0 **	15	1910 3820
1600	1500 1750	176	1952	0,5-3,0 **	13	3690 4120
1800	2000	200	2200	0,5-3,0 **	11	6290
2000	1500	215	2430	0,5-3,0 **	10	5610

(TONGUE AND GROOVE						
("FALS" JOINT						
	Basal chambe	r units					
	Basal chambe Dimensi	r units ons (mm)		Weight			
	Basal chambe Dimensi DN	r units ons (mm) h	t	Weight approx. (kg)			
	Basal chambe Dimensi DN 650 (tongue and groove)	er units ons (mm) h 400 500 1000	t 70	Weight approx. (kg) 150 190 380			
	Basal chamber Dimensi DN 650 (tongue and groove) 650 ("FALS" joint)	r units ons (mm) 400 500 1000 500 1000	t 70 90	Weight approx. (kg) 150 190 380 270 530			

Basal chamber units						
Dimens	Weight					
DN	h	t	approx. (kg)			
1400	300 500 1000	90	310 520 1020			
1600	300 500 1000 2250	90	360 600 1200 2700			
2000	300 500 800 1000 1500 2250	110	600 920 1450 1830 2750 4150			
2400	500 800 1000 1500	180	1850 3000 3700 5550			
2500	500 800 1000 2000	130	1360 2200 2760 5500			
3000	500 800 1000	200	2500 4000 5000			

Basal ig-chamber units							
Dime	ensions (r	Weight					
DN	h	t	approx. (kg)				
1000	300 500 1000 1500	125	350 575 1150 1700				
1200	300 500 1000	135	450 700 1400				
1400	300 500 1000	150	550 910 1800				
1600	300 500 1000	160	650 1100 2200				
2000	300 500 1000	165	850 1400 2800				

Tables – chamber units

Basal base units						
Dimer	nsions (n	nm)		Weight		
DN	Н	t	tb	approx. (kg)		
650 (tongue and groove)	500 1000	70	100	270 460		
650 ("FALS" joint)	540 1040	90	120	350 610		
1000	580 1080 1580	90	120	570 940 1300		
1200	580 1080 1580	90	120*	730 1170 1800		
1400	580 1080	90	120*	890 1390		

* "Water manhole" must have tb ≥ 150 mm

Basal b				
Di	imension	Weight		
DN	Н	t	tb	approx. (kg)
1600	560 1060 2310	90	150	1240 1840 3340
2000	560 860 1060 1560 2060	110	150	1950 2860 2950 3900 5200
2400	630 930 1130 1630	180	180	3900 5000 5700 7550
2500	580 880 1080 2080	130	180	3500 4300 4900
3000	630 930 1130	200	200	6000 7400 8400

Basal-ig base units						
Dir	Weight					
DN	Н	t	tb	approx. (kg)		
1000	658 1158	125	180	1200 1700		
1200	650 1150	135	180	1600 2300		
1400	675 1175	150	200	2100 3000		
1600	695 1195	160	220	2700 3800		
2000	695 1195	165	220	3800 5200		

Basal ig-cones							
	Dimensions (mm)						
DN1	DN2	h	t	approx. (kg)			
1000	650 *	500	125	570			
1200	650 **	600	135	900			
1400	650 * 800**	1000 850	150	1850 1600			
1600	650 * 800 **	1000 850	160	2000 2100			

Basal cones (eccentric manhole)							
[Weight						
DN1	DN2*	h	t	approx. (kg)			
1000	650	500	90	330			
1200	650	500 1000	90	400 730			
1400	650	1000	90	800			
1600	650	1000	90	1070			
2000	650	1000	110	1700			

* Only with tongue and groove ** Only with "FALS" joint

* DN2 can be delivered with tongue/groove or "FALS" joint

Basal cor				
C	Weight			
DN1	DN2	h	t	approx. (kg)
1200	650	250 750	90	400 750
1400	650	1000	90	900
1600	650	700 1000	90	700 1000
2000	650	800	110	1350

Basal adjustment units with tongue and groove								
۵	Weight							
DN	h	t	approx. (kg)					
650	100 150 200 250 300	70	40 60 80 100 120					
800	100 150 200 300 400 500	90	70 100 130 190 250 340					

Basal adjustment units with "FALS"						
Di	Weight					
DN	h	t	approx. (kg)			
650	100 200 300	90	55 110 160			
800	100 200 300 500	90	65 130 200 320			

Basal ending and adjustment units in recycled materials								
DN	Dimensio	Weight approx.						
	Type of ring	h	t	(kg)				
650 (tongue and groove)	Adjustment Adjustment Ending	50 100 50	70	10 20 10				
650 ("FALS" joint)	Adjustment Adjustment Ending	50 100 50	90	10 20 15				

Tables – adjustment units

Jaro AS

PO Box 2181, 9508 Alta. Tel. 78 44 92 00

- 2. Holmen Betong AS 9322 Karlstad. Tel. 77 83 55 00
- 3. Beisfjord Sementvarefabrikk AS Fjordvn. 203, 8522 Beisfjord. Tel. 76 95 04 60
- 4. Sortland Sementvarefabrikk AS PO Box 114, 8401 Sortland. Tel 76 11 34 40
- Midt-Norsk Betong Mosjøen AS PO Box 128, 8651 Mosjøen. Tel 75 11 99 50
- Midt-Norsk Betong Verdal AS Venus vegen 9, 7650 Verdal. Tel. 74 07 52 00

BetoNor AS

- 7. Dept. Trondheim. Tel. 73 95 77 30
- 2. Dept Vingrom. Tel 61 22 18 10
- 8. Sylteosen Betong AS 6440 Elnesvågen. Tel. 99 28 81 00
- 9. Brødr. Ulvestad Cementvarefab. AS 6315 Innfjorden. Tel. 71 22 81 26
- 10. **Førde Sementvare AS** Bruland PO Box 295. 6802 Førde. Tel 99 21 25 55
- 11. Ryfoss Betong AS 2973 Ryfoss. Tel. 61 36 76 50

13. Narmo Betong AS Birkebeinervn. 33, 2316 Hamar. Tel. 62 52 60 00

26. Ølen Betong AS

- 5582 Ølensvåg. Tel. 53 77 52 00
- 24. Dept. Bergen. Tel. 55 94 66 30
- 25. Dept. Haugesund. Tel. 52 72 65 90
- 14. Dept. Bærum. Tel. 67 13 80 33

Loe Rørprodukter AS

- 15. Dept. Oslo Tel. 22 49 91 48
- 16. Dept. Akershus. Tel 64 84 75 50
- 17. Dept. Buskerud. Tel 91 00 66 00
- 19. Dept. Østfold. Tel 69 28 56 20
- 20. Dept. Telemark. Tel 35 59 40 89
- 30. Dept. Trondheim Tel 90 70 21 32
- Østfold Betongprodukter AS Brandsrudvn. 19, 1850 Mysen. Tel. 69 89 15 22
- 21. Hedrum Cementstøperi AS Elvevn. 150, 3271 Larvik. Tel. 33 11 40 22

Nobi Norsk Betongindustri AS

- 22. Dept. Bergen. Tel 55 22 61 00
- 23. Dept. Askøy. Tel. 56 15 16 00
- 27. Skjæveland Cementstøperi AS Fabrikkveien 164, 4323 Sandnes. Tel. 51 60 99 50
- 28. Heimdal Granitt & Betongvare AS PO Box 58 Heimdal. 7472 Trondheim. Tel 72 59 57 00
- 29. Bodø Betong AS PO Box 606, 8001 Bodø Tel 75 58 09 00